Geometry Assignment Overview 2020

April 30th

Directions	Student Checklist			
Complete the activities: • Topic 3 SAS 2	 I solved all of the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 1st

Directions	Student Checklist			
Complete the activities: • Topic 3 SAS 3	 I solved all of the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 4th

Directions	Student Checklist			
Complete the activities: • Topic 3 SAS 4	 I solved all of the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 5th

Directions	Student Checklist			
Complete the activities: • Topic 10 SAS 1	 I solved all of the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 6th

Directions	Student Checklist			
Complete the activities: • Topic 10 SAS 2	 I solved the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 7th

Directions	Student Checklist			
Complete the Activities:Topic 10 SAS 3	 I solved the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 8th

Directions	Student Checklist			
Complete the Activities:Topic 10 SAS 5	 I solved the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 12th

Directions	Student Checklist			
Complete the Activities: • Topic 17 SAS 1	 I solved the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 13th

Directions	Student Checklist			
Complete the Activities: • Topic 17 SAS 2	 I solved the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 14th

Directions	Student Checklist			
Complete the Activities: • Topic 17 SAS 3	 I solved the problems and showed my work. I checked my work against the answer key and made corrections. 			

May 15th

Directions	Student Checklist			
Complete the Activities:Topic 17 SAS 4	 I solved the problems and showed my work. I checked my work against the answer key and made corrections. 			

Support for students, parents, and guardians:

- Teachers will be available to answer questions through Zoom on the following dates. To access the support call, following the directions below
 - Thursday, May 7th, 11:00 11:45 a.m.
 - Click on the link <u>https://zoom.us/j/3791568353</u>, OR
 - Open Zoom, click join, and enter Meeting ID: 379 156 8353
 - Thursday, May 14th, 11:00 11:45 a.m.
 - Click on the link <u>https://zoom.us/j/3791568353</u>, OR
 - Open Zoom, click join, and enter Meeting ID: 379 156 8353

- 1. Using Patty Paper, reflect ΔPAT across the *y*-axis. Label the image ΔP'A'T'. What are the coordinates of the vertices of ΔP'A'T'?
- 2. Write a conjecture about what happens to the coordinates of a point when you reflect it across the **y**-axis.
- 3. Write a conjecture about what happens to the coordinates of a point when you reflect it across the x-axis.
- 4. Using Patty Paper, reflect \triangle PAT across the *x*-axis. Label the image \triangle P"A"T". What are the coordinates of the vertices of \triangle P"A"T"?

Student:			Cla	ass:		Date
Transformation Topic 3 Student Ac	and coordinate tivity Sheet 2; Expl	e geom loring "R	l etry Reflection	is and rot	ations"	Page 2 of
	x	у	-x	-у		
5. Use the answer	choices shown abo	ve to co	mplete ti	he follow	ing stateme	ents.
a. A reflection	across the x -axis n	naps the	point (x ,	y) to the	point (,).
b. A reflection	across the y -axis m	naps the	point (x,	y) to the	point ().

6. Using ordered pair rule notation, rewrite the rules you completed in question 5.

Copyright Agile Mind, Inc. () Content copyright Charles A. Dana Center, The University of Texas at Austin

Student:	Class:	Date

Transformations and coordinate geometry

Topic 3 Student Activity Sheet 2: Exploring "Reflections and rotations"	
Topic 5 Student Activity Sheet 2, Exploring Reflections and forations	

7. Using Patty Paper, reflect \triangle COT across the line y = x. Label the image \triangle C'O'T'. What are the coordinates of the vertices of \triangle C'O'T'?

 Compare the coordinates of C and C', O and O', and T and T'. Notice what is true about the coordinates of each pre-image (x,y) and its image (x',y'). Then use the given answer choices to complete the following statements.

x	У	stay the same	have their signs changed
-x	-у	are interchanged	

a. When the pre-image (x, y) is reflected across the line y = x, the x- and y-coordinates

of the pre-image and image

b. The ordered pair rule for a reflection across the line y = x is

 $(\mathbf{x},\mathbf{y}) \rightarrow (____, ___].$

50000000		
Transformations and coordinate geometry		
Topic 3 Student Activity Sheet 2; Exploring "Reflect	ions and rotations"	Page 4 of 6

Class

Date

- 9. **REINFORCE** Quadrilateral **CDEF** has the following vertices: C(1,2), D(5,3), E(5,1), and F(3,-2).
 - a. Plot quadrilateral CDEF on the grid.
 - b. Reflect quadrilateral CDEF across the x-axis. What are the coordinates of the image?
 - c. Reflect quadrilateral CDEF across the y-axis. What are the coordinates of the image?
 - d. Reflect quadrilateral CDEF across the line y = x. What are the coordinates of the image?

Copyright Agile Mind, Inc. () Content copyright Charles A. Dana Center, The University of Texas at Austin

Student

Page 3 of 6

Student:	Class:	Date
Transformations and coordinate geometr	ry	

10. Using the answer choices provided, name the transformation that goes with each ordered pair rule. Assume $a \neq b$.

reflection across $y = x$	reflection across the x-axis	reflection across the y-axis
rotation of 180° about (0,0)	doesn't match a given transformation	

- a. $(a,b) \rightarrow (b,a)$
- b. $(a,b) \rightarrow (-a,b)$
- c. $(a,b) \rightarrow (a, b)$
- d. $(a,b) \rightarrow (-a,-b)$
- e. $(a,b) \rightarrow (-b,-a)$

Transformations and coordinate geometryTopic 3 Student Activity Sheet 2; Exploring "Reflections and rotations"Page 6 of 6

Class:

Date

c. Reflection across the line y = x.

Student:

Page 5 of 6

d. Reflection across the x-axis, followed by a reflection across the y-axis.

e. Reflection across the y-axis, followed by a reflection across the x-axis.

f. Rotation about the origin by 180° .

11. **REINFORCE** Find the image of the point (5,8) for each transformation described.

- a. Reflection across the x-axis.
- b. Reflection across the y-axis.

Copyright Agile Mind, Inc. ® Content copyright Charles A. Dana Center, The University of Texas at Austin

1. Use this grid to complete the Patty Paper exercise below.

- Overlay your Patty Paper to copy the x- and y-axes, line m, and $\triangle ABC$.
- Reflect $\triangle ABC$ across the y-axis. Mark the locations of A', B', and C'.
- Overlay your Patty Paper on the grid to find the coordinates of A', B', and C'.
- Reflect $\Delta A'B'C'$ across the line x = m. Mark the locations of A", B", and C".
- Overlay your Patty Paper on the grid to find the coordinates of A", B", and C".

Sketch the results from your Patty Paper on the grid, or attach your Patty Paper to this Student Activity Sheet.

Student:	Class:	Date	
Transformations and coordinate geome	etry		
Topic 3 Student Activity Sheet 3; Exploring "Tr	ranslations"	Р	age 2 of 4

Use the results of your Patty Paper activity from question 1 to answer questions 2-4.

2. What is the single ordered pair rule for translating point A?

3. What are the single ordered pair rules for translating points **B** and **C**?

Student:	Class:	Date	
Transformations and coordinate geometry	,		
Topic 3 Student Activity Sheet 3; Exploring "Transl	ations"		Page 3 of 4

4. Complete the steps below to investigate what happens when $\Delta A^{"}B^{"}C^{"}$ translates vertically.

Step 1: Draw $\triangle A^{"}B^{"}C^{"}$ and the line y = 4 on the coordinate grid. Label the line n.

Step 2: Draw the reflection image of $\Delta A^{"B"C"}$ across the x-axis. Label the reflection image of $\Delta A^{"B"C"}$ and record the coordinates of the vertices D, E, and F.

Step 3: Now reflect $\triangle DEF$ across line *n* to get the translation image of $\triangle A^{"B"C"}$. Label the translation image $\triangle D'E'F'$ and record the coordinates of the vertices.

- 5. What is the ordered pair rule for reflecting A" twice to D'?
- 6. What are the single ordered pair rules for translating points A", B", and C"?
- 7. To compare the beginning position of ΔABC with the ending position of $\Delta D'E'F'$, write single ordered pair rules for corresponding vertices. Then describe the translation in words.

Stι	dent:Class:	Date	
Tr To	ransformations and coordinate geometry pic 3 Student Activity Sheet 3; <i>Exploring</i> "Translations"		Page 4 of 4
8.	Fill in the blanks to complete the statements below.		
	In science, a vector is a quantity that has A vector can also be described as a	_ and	
			·

9. Use vector notation to describe the vector on the graph.

10. Using the answer choices provided, complete the following statements.

<i>k</i> < 0	h > 0	x + h	x - h
k > 0	h < 0	y + k	y - k

- a. If P(x,y) is translated |h| units to the right, the signed value of h is _____.
- b. If P(x,y) is translated |h| units to the left, the signed value of h is _____.
- c. If P(x,y) is translated |k| units up, the signed value of k is _____.
- d. If **P**(**x**,**y**) is translated |**k**| units down, the signed value of **k** is ______.
- e. A single ordered pair rule for translating P(x,y) h units horizontally and k units vertically is $P(x,y) \xrightarrow{\langle h,k \rangle} P'($,).
- 11. **REINFORCE** A point has coordinates (x, y). Write an ordered pair rule for a translation that moves the point 5 units to the right and 3 units down.

Student:______Date_____

Transformations and coordinate geometry

Topic 3 Student Activity Sheet 4; *Exploring* "Rigid and nonrigid transformations" Page 1 of 5

An animation of a dog is modeled in the coordinate plane with translations and translation vectors.

1. What is one translation vector that moves the dog along the path shown?

2. How would this vector be applied to move the dog from point A to point B?

Student:	Class:	Date
Transformations and coordinate geome	strv	
Traisformations and coordinate geome	and a set set of a set of a feat of a feat of a feat of a set of a set of a feat of a	

Topic 3 Student Activity Sheet 4; *Exploring* "Rigid and nonrigid transformations" Page 2 of 5

3. How could you model a glider in the air circling a point on the ground? In this example, the glider is circling clockwise about the point on the ground. Suppose the glider is placed in the coordinate plane with the point on the ground set at the origin. What transformation would make the glider follow the exact path shown?

Student:______Date_____Date_____

Transformations and coordinate geometry

Topic 3 Student Activity Sheet 4; *Exploring* "Rigid and nonrigid transformations" Page 3 of 5

4. Use algebra to show that \overrightarrow{AB} and $\overrightarrow{A'B'}$ are parallel.

- 5. Describe the relationship between an image and its dilation.
- 6. Point P(x,y) is dilated with the center at the origin by a scale factor of s. Write an ordered pair rule for this transformation.
- 7. Point P(x,y) is transformed by a horizontal stretch with factor *a* and vertical stretch with factor *b*. Write an ordered pair rule for this transformation.

agile
Mind®

Copyright Agile Mind, Inc. ® Content copyright Charles A. Dana Center, The University of Texas at Austin

Student:

Copyright Agile Mind, Inc. (Content copyright Charles A. Dana Center, The University of Texas at Austin

Transformations and coordinate geometry	
Topic 3 Student Activity Sheet 4; <i>Exploring</i> "Rigid and nonrigid transformations" 4 of 5	Page

Class:

Date

8. Place an X in each slot in the table to decide if each transformation preserves size or shape or neither.

Transformations	Preserves size	Preserves shape	Preserves neither
Reflection			
Rotation			
Translation			
Dilation			
Vertical stretch			
Horizontal stretch			

Student:	Class:	Date
----------	--------	------

Transformations and coordinate geometry

Topic 3 Student Activity Sheet 4; *Exploring* "Rigid and nonrigid transformations" Page 5 of 5

11. **REINFORCE** Quadrilateral ABCD is a rectangle with the coordinates of vertices shown.

a. Transform quadrilateral ABCD by a vertical stretch with factor 2 and horizontal stretch with factor ½. What are the coordinates of the transformed quadrilateral A'B'C'D'?

12. REINFORCE Write a comparison of rigid and nonrigid transformations. Include dilations, vertical stretches, and horizontal stretches in your discussion of nonrigid transformations. Be sure to discuss and similarities and differences.

Copyright Agile Mind, Inc. ® Content copyright Charles A. Dana Center, The University of Texas at Austin

Student:	Class:	Date
Using congruent triangles Topic 10 Student Activity Sheet 1; Overvi Page 1 of 3	ew	

1. **REVIEW** Suppose $\triangle ABC$ is isosceles with AB = BC and altitude \overline{BD} . Find the length of AC and m $\angle ABC$.

2. In order to find the distance across a pond, a surveyor helps a park ranger measure the following distances to create two triangles. How can the park ranger be sure that the two triangles are congruent?

Student:_____

Date

Class:

Using congruent triangles

Topic 10 Student Activity Sheet 1; Overview Page 2 of 3

3. What does CPCTC stand for?

4. In the box to the left draw ΔCEA , and in the box to the right draw ΔCDB .

Using congruent triangles Topic 10 Student Activity Sheet 1; Overview Page 3 of 3

Student:

Fill in the blanks in the table with the abbreviations of the congruent triangle postulates.

Class:

Date

Student:	Class:	Date	
Using congruent triangles			
Topic 10 Student Activity Sheet 2; Exploring "	'Using CPCTC"	Page	1 of 6

REINFORCE Suppose you want to prove $\overline{AD} \cong \overline{DC}$. These two segments are parts of which two triangles?

Using congruent triangles	
Topic 10 Student Activity Sheet 2; Exploring "Using CPCTC"	Page 2 of 6

Class:

Given: $\overline{NO} \cong \overline{MP}$, $\overline{NO} \parallel \overline{MP}$ 1. REINFORCE Prove: $\angle N \cong \angle P$

Student:

a. To complete this proof, first mark all the congruent parts on the diagram. Based on your markings, which triangles are congruent, and why? How can you use these triangles to prove $\angle N \cong \angle P$?

Date

b. Complete the proof by filling in the blanks.

Given: $\overline{NO} \cong \overline{MP}$, $\overline{NO} \parallel \overline{MP}$ Prove: ∠N ≅∠P

Statements	Reasons
	1. Given
2. ∠NOM ≅ ∠PMO	2.
3. $\overline{NO} \cong \overline{MP}$	3.
4. $\overline{\text{MO}} \cong \overline{\text{MO}}$	4.
5. $\triangle NOM \cong \triangle PMO$	5.
6. $\angle N \cong \angle P$	6.

Student:	Class:	Date
Using congruent triangles Topic 10 Student Activity Sheet 2; Exploring	g "Using CPCTC"	Page 3 of 6

2. **REINFORCE** Complete the proof by choosing statements from the list below and filling in the steps of the proof in the correct order.

Statements:

$\overline{\text{MO}}\cong\overline{\text{MO}}$	$\angle NOM\cong \angle PMO$	NO	$\angle NMO \cong \angle POM$	$\angle N \cong \angle P$	$\Delta \mathbf{NOM}\cong \Delta \mathbf{PMO}$

Given: $\overline{NM} \parallel \overline{OP}, \ \angle N \cong \angle P$ Prove: $\overline{NO} \parallel \overline{MP}$

Statement	Reasons
1. NM OP	1. Given
2.	2. If parallel lines are cut by a transversal, then alternate interior angles are congruent.
3.	3. Given
4.	4. Reflexive property of congruence
5.	5. AAS
6.	6. CPCTC
7.	7. If the alternate interior angles are congruent, then the lines are parallel.

Using congruent triangles

Student:

Topic 10 Student Activity Sheet 2; Exploring "Using CPCTC"

Page 4 of 6

Date

3. Mark the congruent parts of the triangles and complete the proof.

SAS	Reflexive	$\Delta ABD \cong \Delta CBD$	Def∠bis.	ASA
∠A ≅ ∠C	$\triangle ABD \cong \triangle DBC$	СРСТС	Given	Symmetric

Class:

Statements	Reasons
1. \overline{BD} bisects $\angle ABC$ and $\angle ADC$	1.
2. ∠ABD \cong ∠CBD; ∠ADB \cong ∠BDC	2.
3. $\overline{BD} \cong \overline{BD}$	3. property
4.	4.
5.	5.

Page 5 of 6

4. Mark the congruent parts of the triangles and complete the proof.

Given	ASA Postulate	$\Delta BCA \cong \Delta DCE$	CPCTC	$\angle ACB \cong \angle ECD$
AE bisects BD	BC ≅ CD	AC ≅ CE	DB bisects AE	

Statements	Reasons
∠B ≅ ∠D	
	Given
	Def. of segment bisector
	Vertical angles are congruent.
	Def. of segment bisector

5. **REINFORCE** Given $\triangle ABC \cong \triangle DEF$, name all of the corresponding parts you could prove congruent using CPCTC.

Student:	Class:	Date

Using congruent triangles Topic 10 Student Activity Sheet 3; *Exploring* "Isosceles triangle theorem"

1. List the isosceles triangles conjectures you made in the topic **Properties of a Triangle**.

Page 1 of 5

2. **REINFORCE** If the vertex angle of an isosceles triangle has a measure of 50° , what are the measures of the two base angles? Explain your solution.

3. Complete this proof of the Isosceles Triangle Theorem.

AD = DC CPCTC reflexive AB = BC	symmetric	SSA	midpoint	SSS
---------------------------------	-----------	-----	----------	-----

2. BD is the median of AC.	2.
3.	3. Median of isos. \triangle forms two $\cong \triangle$ s.
4. ∠ABD ≅ ∠CBD	4.
5.	5. Def. of \angle bisector

Student:	Class:	Date

Page 5 of 5

Using congruent triangles

Topic 10 Student Activity Sheet 3; <i>Exploring</i> "Isosceles triangle theorem"	
--	--

9. **REINFORCE** Given the triangle below with the angle measures shown, rank the side lengths in order from smallest to greatest.

- 1. Consider the proof set up above. What triangle congruence would help you prove the statement?
- 2. Redraw the triangles so they do not overlap. On the two new triangle diagrams, mark the congruences given in the proof setup, as well as the two angles you know are congruent by the Reflexive Property.

3. Based on the given information, which triangle congruence postulate will you use to prove $\Delta CEA \cong \Delta CDB$?

Copyright Agile Mind, Inc. ® Content copyright Charles A. Dana Center, The University of Texas at Austin

agile Mind®

Student:	Class:	Date	
Using congruent triangles			
Topic 10 Student Activity Sheet 5; Exploring	"Overlapping triangles"		Page 2 of 3

4. Now write a formal proof.

Given: AD = BE, CD = CE

Prove: $\angle CEA \cong \angle CDB$

Using congruent triangles Topic 10 Student Activity Sheet 5; *Exploring* "Overlapping triangles" Page 3 of 3

Class:

REINFORCE Given: $\overline{AD} \cong \overline{BC}$, and $\angle DAB \cong \angle CBA$ Prove: $\triangle AXB$ is isosceles

Student:

Date

- 1. Consider the sets of images.
 - a. What title would you give each set of images?

b. Write the definition of a polygon.

Student:	Class:	Date
Polygons and special quadrilaterals		

Topic 17 Student Activity Sheet 1; Overview Page 2 of 3

2. Fill in the blanks below to show your understanding of the parts of a polygon.

d. Name an interior angle. _____

e. Name a diagonal. _____

4. Write a definition of a regular polygon.

5. Draw a regular polygon. Then draw an irregular polygon with the same number of sides.

Student:______Date_____ Polygons and special quadrilaterals

Topic 17 Student Activity Sheet 2; *Exploring* "Interior and exterior angles of a polygon" Page 1 of 5

1. Divide each polygon into non-overlapping triangles. What pattern do you see?

2. Write a formula for the sum of the interior angles of a polygon with *n* sides.

Copyright Agile Mind, Inc. () Content copyright Charles A. Dana Center, The University of Texas at Austin

Student:_

Class:

Date

Polygons and special quadrilaterals

Topic 17 Student Activity Sheet 2; *Exploring* "Interior and exterior angles of a polygon" Page 2 of 5

3. Use what you know about regular polygons to find the measure of each interior angle of the regular polygons listed in the chart. What do you notice?

Regular Polygons			
Number of sides	Sum of interior angle measures (in degrees)	Measure of each interior angle (in degrees)	
3			
4			
6			
8			
10			
20			
100			
1000			

Polygons and special quadrilaterals

Student:

Topic 17 Student Activity Sheet 2; *Exploring* "Interior and exterior angles of a polygon" Page 3 of 5

Class:

4. **REINFORCE** A soccer ball consists of a pattern of regular pentagons and regular hexagons (as shown). Explain why this pattern cannot be used to tile a flat surface.

Date

Student:______Date_____

Polygons and special quadrilaterals

Topic 17 Student Activity Sheet 2; *Exploring* "Interior and exterior angles of a polygon" Page 4 of 5

5. Show algebraically why the exterior angles of a polygon add up to 360°.

Student:

Class:

Date

Polygons and special quadrilaterals

Topic 17 Student Activity Sheet 2; *Exploring* "Interior and exterior angles of a polygon" Page 5 of 5

- 6. Fill in the blanks to describe the regular nonagon shown.
 - a. Sum of the measures of the interior angles:
 - b. Measure of each interior angle: _____
 - c. Sum of the measures of the exterior angles:
 - d. Measure of each exterior angle:
- 7. **REINFORCE** Find the measure of each interior and exterior angle (one at each vertex).

Angle	Interior	Exterior
Α		60°
В		
C	135°	
D		61°
E		65°
F	125°	
Total		

Student:	_Class:	Date
Polygons and special quadrilaterals		
Topic 17 Student Activity Sheet 3; Exploring "Specia	al quadrilaterals"	Page 1 of 4

1. Write a definition of a parallelogram.

Student:______Date_____

Polygons and special quadrilaterals

Topic 17 Student Activity Sheet 3; Exploring "Special quadrilaterals"

4. What conjectures can you make about the sides, angles, and diagonals of a parallelogram?

Page 2 of 4

2. What symmetry does a parallelogram have?

3. Draw a scalene triangle. Find a rotation that will create a parallelogram from the preimage and image of the rotation.

Student:	Class:	Date	
Polygons and special quadrilaterals			
Topic 17 Student Activity Sheet 3; Exploring "Spe	ecial quadrilaterals	"	Page 3 of 4

REINFORCE Fill in the missing statements and reasons in the following proof.

Statements	Reasons
1. ABCD is a parallelogram.	1.
2. $\overline{AB} \cong \overline{CD}$	2.
3. ∠1≅∠2	3.
4.	4. Given
5. $\triangle ABE \cong \triangle CDF$	5.
6.	6. CPCTC

Polygons and special quadrilateralsTopic 17 Student Activity Sheet 3; Exploring "Special quadrilaterals"Page 4 of 4

Class:

Date

5. List the diagonal properties of each shape.

Student:

Parallelogram	
Rectangle	
Rhombus	
Square	
Isosceles trapezoid	

Student:	Class:	Date	
Polygons and special quadrilaterals			
Topic 17 Student Activity Sheet 4; Exploring "Coo	rdinate proofs"		Page 1 of 2

1. **REVIEW** Use this polygon to answer the following questions.

2. Sketch quadrilateral ABCD, where A is (2,1), B is (4,2), C is (3,4), and D is (1,3).

3. Using the distance formula, find the length of each side of quadrilateral ABCD.

4. What algebraic relationship do perpendicular lines have?

a. Find the midpoint of \overline{AB} .

- b. Find the slope of each of the four sides.
- c. Are any of the slopes the same? If so, what does this tell you about those sides?
- d. Find the length of each of the sides. Then, name any sides that have the same length.

Copyright Agile Mind, Inc. () Content copyright Charles A. Dana Center, The University of Texas at Austin

agile Mind® April 30th Answer Sheets Topic 3 SAS 2 Transformations and coordinate geometry Topic 3 Student Activity Sheet 2; Exploring "Reflections and rotations"

Page 1 of 2

When you reflect a point across the y-axis, the x-coordinates change signs.
 When you reflect a point across the x-axis, the y-coordinates change signs.
 4.

5. a) (**x**,-**y**) b. (-**x**, **y**)

6. A) $(x.y) \rightarrow (x.-y)$ b) $(x,y) \rightarrow (-x,y)$

8. A) are interchanged. B) $(x,y) \rightarrow (y,x)$

Copyright Agile Mind, Inc. ® Content copyright Charles A. Dana Center, The University of Texas at Austin

Page 2 of 2

- 9. A) ANSWER SHOWN ON GRAPH ABOVE B) C'(1,-2), D' (5,-3), E' (5,-1), F'(3,2) C) C'(-1,2), D'(-5,3), E'(-5,1), F'(-3,-2) D) C'(2,1), D'(3,5), E'(1,5), F'(-2,3)
- 10. A) REFLECTION ACROSS Y=X B) REFLECTION ACROSS THE -AXIS C) REFLECTION ACROSS THE X-AXIS D) ROTATION OF 180 DEGREES ABOUT (0.0) E) DOESN'T MATCH A GIVEN TRANSFORMATION

11. a) (58) b) (-5.8)	c) (8.5)	d) (-58)	e) -58)	f) (-58)
11. u) (0, 0) 0) (0,0)	0,0,0,	u) (0, 0)	0, 0, 0,	1) (0, 0)

May 1st Answer Sheets SAS 3

Transformations and coordinate geometry Topic 3 Student Activity Sheet 3; *Exploring* "Translations"

Page 1 of 2

1.

Completed Patty Paper activity should look like this:

2. A is $(-4, -3) \rightarrow (6, -3)$ 3. B is $(-1, -2) \rightarrow (9, -2)$ C is $(-2, -1) \rightarrow (8, -1)$ 4.

Complete the steps below to investigate what happens when $\Delta A''B''C''$ translates vertically. [EX2, pages 5 and 6]

Step 1: Draw $\Delta A^{"B"C"}$ and the line y = 4 on the coordinate grid. Label the line n. Step 2: Draw the reflection image of $\Delta A^{"B"C"}$ across the x-axis. Label the reflection image of $\Delta A^{"B"C"}$ and record the coordinates of the vertices D, E, and F. Step 3: Now reflect ΔDEF across

Step 3: Now reflect ΔDEF across line *n* to get the translation image of $\Delta A^{"}B^{"}C^{"}$. Label the translation image $\Delta D^{"}EF$ and record the coordinates of the vertices.

5. Point A" moved to D and D' in the following way: $(6, -3) \rightarrow (6,3) \rightarrow (6,5)$

Copyright Agile Mind, Inc. ® Content copyright Charles A. Dana Center, The University of Texas at Austin

May 1st Answer Sheets SAS 3

Transformations and coordinate geometryTopic 3 Student Activity Sheet 3; Exploring "Translations"Page 2 of 2

- 6. The single ordered pair rule for translating point A" to D' is (6,-3) → (6,5). The rule for B" to E' is (9,-2) → (9,6) and the rule for C" to F' is (8,-1) → (8,7).
- A(-4,-3) → D'(6,5); B(-1,-2) → E'(9,6); C(-2,-1) → F'(8,7) Each vertex of ΔABC is translated 10 units horizontally and 8 units vertically.
- 8. Magnitude; direction. Directed line segment

				$P(\mathbf{x},\mathbf{y}) \xrightarrow{\langle \mathbf{h},\mathbf{k} \rangle} P'(\mathbf{x}+\mathbf{h},\mathbf{y}+\mathbf{k}).$
(0. a) h > 0	b) $h > 0$	c) $k > 0$	d) k < 0	e)

11.

1

 $(x,y) \rightarrow (x+5,y-3) \text{ or } (x,y) \xrightarrow{\langle 5,-3 \rangle} (x+5,y-3)$

May 4th Answer Sheets SAS 4

Transformations and coordinate geometry

Student Activity Sheet 4; <i>Exploring</i> "Rigid and nonrigid transformations"	Page 1 of 1
---	-------------

- 1. Some possible answers: <2, -1>, <4,-2>, <8,-4>
- 2. Answers will cary depending on vector given in question 1. The answer below corresponds to the vector <2,-1>. The transformation would have to be repeated four times.
- A 270° clockwise rotation would cause the glider to follow this path. 270° out of 360° is three-fourths of a complete rotation. The glider stops three-fourths of the way around the circle.
- 4.

```
\overrightarrow{AB} has slope m_{AB} = \frac{b-0}{0-a} = -\frac{b}{a}.
```

```
\overleftarrow{\mathbf{A}'\mathbf{B}'} has slope m_{\mathbf{A}'\mathbf{B}'} = \frac{(\mathbf{b}+\mathbf{d})-\mathbf{d}}{0-\mathbf{q}} = -\frac{\mathbf{b}}{\mathbf{q}}.
```

 \overrightarrow{AB} and $\overrightarrow{A'B'}$ are parallel because they have the same slope

- 5. A dilation is a transformation that scales an image by a scale factor. The ratios of the lengths of the corresponding sides of the triangle are equal, so the side lengths are proportional. The measures of corresponding angles are equal. The original image and the dilated image are similar.
- 6.
- $P(x,y) \rightarrow P'(sx, sy)$
- 7.
 - $P(x,y) \rightarrow P'(ax, by)$
- 8.

Transformations	Preserves size	Preserves shape	Preserves neither
Reflection			
Rotation			
Translation		ø	
Dilation		2	
Vertical stretch			
Horizontal stretch			

11. a) A'(1,4) B'(1,12) C'(5,12) D'(5,4)

12. Students' answers will vary. Answers should point out that nonrigid transformations do not preserve size and shape. Dilations preserve shape but not size. Angle measures are also preserved in dilations. Vertical and horizontal stretches distort the image.

Copyright Agile Mind, Inc. (8) Content copyright Charles A. Dana Center, The University of Texas at Austin

May 5^{th.} Answer Sheets SAS 1

Using congruent triangles

Topic 10 Student Activity Sheet 1; Overview Page 1 of 1

1.	
x ² + 1 = 2 x	5 y = 3 y + 10
$x^2 - 2x + 1 = 0$	2 y = 10
(x - 1)(x - 1) = 0	y = 5
x = 1	$m \angle ABC = (5y + 3y + 10)^{\circ}$
$AC = x^2 + 1 + 2x$	$m \angle ABC = (5(5) + 3(5) + 10)^{\circ}$
AC = 1 + 1 + 2	m∠ ABC = 50°
AC = 4 units	

- The surveyor and park ranger have measured the two pairs of sides and found that they are the same length, so each pair of sides is congruent. The included angles are congruent because they are vertical angles. Therefore, the park ranger can say that the two triangles are congruent by SAS.
- 3. Corresponding Parts of Congruent Triangles are Congruent.
- 4.

Using congruent triangles

May 6th Answer sheets SAS 2

Using congruent triangles

Topic 10 Student Activity Sheet 2; Exploring "Using CPCTC"

5.

 $\begin{array}{l} \mbox{Using CPCTC (the definition of congruent triangles):} \\ \mbox{$m $\star{$\star{$\star{$m$}$}$}$} \\ \mbox{$$\overline{$\star{$m$}$}$} \\ \mbox{$$\overline{$\star{$m$}$}$}$ \\ \mbox{$$\overline{$\star{$m$}$}$} \\ \mbox{$$\overline{$\star{$m$}$}$}$ \mbox{$$\overline{$\star{$m$}$}$}$ \mbox{$$\overline{$\star{$m$}$}$}$ \mbox{$$\overline{$\star{$m$}$}}$ \\ \mbox{$$\overline{$\star{$m$}$}$} \mbox{$$\overline{$\star{$m$}$}}$ \mbox{$$\overline{$\star{$m$}$}}$ \mbox{$$\overline{$\star{$m$}$}}$ \mbox{$$\overline{$\star{$m$}$}}$ \mbox{$$\overline{\st

7. NO P MP

Page 2 of 2

May 7th Answer Sheets SAS 3 **Using congruent triangles** Topic 10 Student Activity Sheet 3; *Exploring* "Isosceles triangle theorem"

Page 1 of 1

1. The base angles of an isosceles triangle are congruent. **BD** is the perpendicular bisector of **AC**. **BD** bisects \angle **ABC**. \triangle **ABD** $\cong \triangle$ **CBD**.

Copyright Agile Mind, Inc. ® Content copyright Charles A. Dana Center, The University of Texas at Austin

May 8th ANSWER SHEETS SAS 5 **Using congruent triangles** TOPIC 10 Student Activity Sheet 5; *Exploring* "Overlapping triangles"

Page 1 of 1

1. If you could show that $\triangle CEA\cong \triangle CDB$, you could use CPCTC to prove $\angle CEA\cong \angle CDB$. 2.

 You can use SAS, because CE = CD and ∠C ≅ ∠C. You will have to use the Segment Addition Postulate to show that AC = BC.

4.

Statements	Reasons
1. $AD = BE, CD = CE$	1. Given
2. $AD + CD = BE + CE$	2. Addition Property of Equality
3. $AD + CD = AC, BE + CE = BC$	3. Segment Addition Postulate
4. AC = BC	4. Substitution
5. $\angle C \cong \angle C$	5. Reflexive Property of Congruence
6. $\triangle CEA \cong \triangle CDB$	6. SAS Triangle Congruence Postulate
7. ∠CEA ≅ ∠CDB	7. CPCTC

Statements	Reasons
1. $\overline{AD} \cong \overline{BC}$, $\angle DAB \cong \angle CBA$	1. Given
2. AB ≅ AB	2. Reflexive
3. $\triangle DAB \cong \triangle CBA$	3. SAS
4. ∠ABD ≅∠BAC	4. CPCTC
5. AX ≅ BX	5. Converse Isosceles Triangle Theorem
6. △AXB is isosceles	6. Definition of isosceles triangle

May 12th **ANSWER SHEETS SAS 1**

Polygons and special quadrilaterals

Topic 17 Student Activity Sheet 1; Overview

Page 1 of 1

- 1. A) Left picture Polygons, Right picture Not polygons B) A polygon is a plane figure made up of line segments that intersect only at their endpoints and form a closed figure.
- 2. a) A, B, C, D, E, or F b) Sampel answer: ABCDEF c) AB, BC, CD, DE, EF, or AF d) $\angle A$, $\angle B$, $\angle C$, $\angle D$, $\angle E$, or $\angle F$
 - e) Same answers: AC, EB, FC, DA
- 3. 3 = triangle, 4 = quadrilateral, 5 = pentagon, 6= hexagon, 7 = heptagon, 8= octagon, 9 = nonagon, 10= decagon, 12= dodecagon
- 4. A regular polygon is a polygon that is equilateral and equiangular
- 5. Drawings will vary

agile Mind®

May 13th ANSWER SHEETS SAS 2

Polygons and special guadrilaterals

Student Activity Sheet 2; Exploring "Interior and exterior angles of a polygon" Page 1 of 2

The number of triangles is two less than the number of sides.

2. Sum of the measures of the interior angles of a polygon = (n - 2)180 $^{\circ}$

4		
•	٠	

Regular Polygons			
Number of sides	Sum of interior angle measures (in degrees)	Measure of each interior angle (in degrees)	
3	180	60	
4	360	90	
6	720	120	
8	1,080	135	
10	1,440	144	
20	3,240	162	
100	17,640	176.4	
1000	179,640	179.6	

As the number of sides increases, the angle measure increases. The interior angle measure is getting closer to 180°

4. The interior angles of the two regular hexagons and the regular pentagon add up to less than 360° $(108^\circ + 120^\circ + 120^\circ = 348^\circ)$ when arranged around a single point on a flat surface. This tiling arrangement only works in 3-dimensional space

May 13th ANSWER SHEETS SAS 2

Polygons and special quadrilaterals

Student Activity Sheet 2; Exploring "Interior and exterior angles of a polygon" Page 2 of 2

5.

Sum of interior $\angle s + Sum$ of exterior $\angle s = 180^{\circ}n$

- (n-2) 180° + Sum of exterior $\angle s = 180°n$
- $180^{\circ}n 360^{\circ} + \text{Sum of exterior } \angle s = 180^{\circ}n$
 - 0 + Sum of exterior $\angle s = 180^{\circ}n 180^{\circ}n + 360^{\circ}$

Sum of exterior $\angle s = 360^{\circ}$

- 6. a) 1260-degree b) 140 degrees c) 360 degrees d) 40 degrees
- 7.

5

:s A

May 17 ANSWER SHEETS SAS 3

Polygons and special quadrilaterals

Student Activity Sheet 3; Exploring "Special quadrilaterals"

Page 1 of 1

- 1. A parallelogram is a quadrilateral with two pairs of parallel sides.
- 2. Parallelograms have point symmetry, which is 180 degrees rotational symmetry. 3.

- 4.
- The opposite sides of a parallelogram are congruent.
- The opposite angles of a parallelogram are congruent.
- The consecutive angles of a parallelogram are supplementary.
- The diagonals of a parallelogram bisect each other

Statements	Reasons
1. ABCD is a parallelogram.	1. Given
2. $\overline{AB} \cong \overline{CD}$	 Opposite sides of a parallelogram are congruent.
3. ∠1≅∠2	3. Opposite angles of a parallelogram are congruent.
4. ∠3 ≅ ∠4	4. Given
5. $\triangle ABE \cong \triangle CDF$	5. ASA
6. AE ≅ FC	6. CPCTC

5.

Parallelogram	Diagonals bisect
Rectangle	<u>Diagonals bisect</u> <u>Diagonals ≅</u>
Rhombus	Diagonals bisect Diagonals⊥
Square	<u>Diagonals⊥</u> Diagonals≅ <u>Diagonals bisect</u>
Isosceles trapezoid	Diagonals≅

May 15th ANSWER SHEETS SAS 4

Polygons and special quadrilaterals Student Activity Sheet 4; Exploring "Coordinate proofs"

Page 1 of 1

3. AB = BC = CD = AD = √5
4. The slopes of perpendicular lines are negative reciprocals of each other. Another way of saying this is that the product of the slopes of perpendicular lines is -1.

